
Short Papers___

On the Thermal Attack in Instruction Caches

Joonho Kong, Johnsy K. John, Eui-Young Chung,
Sung Woo Chung, and Jie Hu

Abstract—The instruction cache has been recognized as one of the least hot

units in microprocessors, which leaves the instruction cache largely ignored in on-

chip thermal management. Consequently, thermal sensors are not allocated near

the instruction cache. However, malicious codes can exploit the deficiency in this

empirical design and heat up fine-grain localized hotspots in the instruction cache,

which might lead to physical damages. In this paper, we show how instruction

caches can be thermally attacked by malicious codes and how simple techniques

can be utilized to protect instruction caches from the thermal attack.

Index Terms—Cache memories, fine-grain localized hotspot, malicious codes,

microprocessors, thermal attack.

Ç

1 INTRODUCTION

AS technology trends are packing transistors even more tightly, the
on-chip power densities are exponentially increasing [1]. In
addition, slow supply voltage scaling further deteriorates this
situation. The situations are getting even worse, as the localized
power densities grow exponentially with the advanced process
technology. Power densities have become high enough to cause
serious thermal challenges, possibly even resulting in a project
cancellation [36]. This in turn leads to demands for much larger
cooling capacity in the microprocessor designs, thus significantly
increasing the costs of cooling systems and chip packaging [34].
Without proper consideration of thermal problems, permanent
damage (thermal runaway) or gradual damage (accelerated aging)
on the microprocessor would be suffered [6].

To overcome the thermal challenges in a cost-effective manner,
dynamic thermal management (DTM) techniques are proposed
[3], [12], [30], [32]. DTM monitors chip-wide temperature at
runtime and dynamically invokes power reduction schemes to
avoid thermal emergency once the temperature exceeds a
predefined DTM trigger threshold, which allows less expensive
packaging/fan solution. In the meantime, thermal hotspots are not
spatially static but dynamically moving over time, depending on
which on-chip structures (e.g., register file, integer arithmetic,
floating-point arithmetic, etc.) are most heavily used. As spatial

thermal differences are exponentially increasing with distance
[19], a single sensor is not sufficient to track temperature changes
across a large chip. Especially, it may become a problem in the
case of malicious software that tries to create a hotspot in an
unmonitored structure. This is different from the thermal denial-
of-service (DOS) attack presented in [6], [11].

Though caches are generally not included in the hottest
functional units in microprocessors, they could be targets for
thermal attacks, which may lead to thermal runaway in the caches.
Against the thermal attack in on-chip caches, there might be
several solutions at the circuit-/packaging-level. First one is to
increase the number of thermal sensors across the caches. Though
more thermal sensors make the microprocessor more reliable,
sensors must be fairly large for high accuracy, making them costly
in terms of area and power. Furthermore, increasing the number of
sensors also increases the testing and calibration cost for each chip.
Even with this overhead, IBM employs nine thermal sensors for a
core in Power6 microprocessor [8]. However, the thermal sensors
are not deployed in relatively cool units such as on-chip caches
rather in most likely hotspots, in order to control the incurred cost
of thermal sensors. Second solution is to consider the worst case
where a hotspot is farthest from a thermal sensor. However,
microprocessors designed under this worst case assumption will
suffer from severe performance degradation by extremely over-
estimating the temperature. According to our simulation, in case
of the worst case design, an average performance loss of more
than 50 percent is observed when executing the SPEC2000 INT
benchmark suite. Moreover, microprocessor designers should
consider the thermally malicious code to set appropriate thermal
guard bands. In most modern microprocessors, however, they set
the thermal guard bands considering the normal application
behavior to optimize performance under thermal constraints such
as Thermal Design Point (TDP). The trade-off among reliability,
performance, and cost, paradoxically, gives the malicious code an
opportunity to thermally attack the microprocessor.

The contribution of this paper is summarized as follows:
This paper is the first-time introduction to thermal attacks on
unexpected fine-grain hotspots and their protection methods. The
rest of the paper is organized as follows: Section 2 discusses the
related work on temperature measurement, temperature manage-
ment, and thermal security. Section 3 introduces the possibility of
the thermal attack in microprocessors and the potential target of the
thermal attacks. Section 4 describes our fine-grain cache modeling.
Section 5 presents examples of a malicious code for the thermal
attacks. Section 6 proposes simple and effective protection
techniques. Section 7 presents evaluation results, and lastly we
conclude this paper in Section 8.

2 RELATED WORK

2.1 Temperature Measurement

Conducting thermal analysis in the early stage of microprocessor
design is of critical importance to its future success. Skadron et al.
developed an architectural-level temperature modeling tool, called
HotSpot [13], [31], [32], which enables computer architects to
evaluate architectural-level thermal-aware designs. HotSpot is a
software model for simulating on-chip temperatures at a micro-
architectural granularity. It models the processor as a network of
thermal resistors and conductors per functional unit, where power
dissipation in each unit is treated as current source in the
RC network. The power dissipation for each unit is obtained by
the access counts in the architectural simulator. Lee and Skadron
extended HotSpot to interface with performance counters in order
to get activity data directly from a real processor [20]. They
estimated power dissipation from performance counters based on
a model developed by Isci and Martonosi [14]. Since most recent

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010 217

. J. Kong is with the Division of Computer and Communications
Engineering, Science Library, Room 604A, Korea University, Anam-dong
5-ga, Seongbuk-gu, Seoul 136-713, South Korea.
E-mail: luisfigo77@korea.ac.kr.

. J.K. John is with the AMD Boston Design Center, Boston Design Center,
Advanced Micro Devices, Inc., Boxborough, MA 01719.
E-mail: johnsy.john@amd.com.

. E.-Y. Chung is with School of Electrical and Electronic Engineering,
Engineering Bldg #2 B620, Yonsei University, Sinchon-dong, Seodaemun-
gu, Seoul 120-749, South Korea. E-mail: eychung@yonsei.ac.kr.

. S.W. Chung is with the Division of Computer and Communications
Engineering, Science Library, Room 404C, Korea University, Anam-dong
5-ga, Seongbuk-gu, Seoul 136-713, South Korea.
E-mail: swchung@korea.ac.kr.

. J. Hu is with Department of Electrical and Computer Engineering, Newark
College of Engineering, New Jersey Institute of Technology, University
Heights, Newark, NJ 07102. E-mail: jhu@njit.edu.

Manuscript received 17 Apr. 2008; revised 1 Dec. 2008; accepted 5 Mar. 2009;
published online 20 Mar. 2009.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-2008-04-0075.
Digital Object Identifier no. 10.1109/TDSC.2009.16.

1545-5971/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

microprocessors, including embedded processors, have perfor-
mance counters, HotSpot extension using performance counters
presents opportunities to measure the localized temperature of real
processors. On the other hand, its computation was too heavy to
be adopted in real temperature monitoring, though it is a nice
temperature modeling tool. Note that complicated differential
equations should be solved in order to find localized temperatures
in HotSpot. To monitor the localized temperatures with negligible
performance overhead, Chung and Skadron proposed a simple
formula using simple regression analysis [5].

2.2 Temperature Management

Huang et al. [12] proposed a DVS-based technique for thermal
control. Though they investigated the memory hierarchy, they did
not examine other hot functional blocks such as register files.
Brooks and Martonosi [3] set a constant threshold power and they
applied five thermal control techniques (clock frequency scaling,
voltage and frequency scaling, decode throttling, speculation
control, and I-cache toggling), when the threshold power was
exceeded. They found DFS and DVS to be inefficient because of the
invocation overhead (more than 10 ms compared to the short
sampling period, 10,000 cycles). Skadron et al. [30] proposed a
formal control theory for DTM. Different from the previous studies
that adopted constant trigger temperature (or power) and fixed
response, they allow the fetch-toggling rate to be changed
according to the thermal history that may need additional storage.
There are some previous works [21], [25] on thermal management
in SMP systems, which schedules the tasks to make use of the idle
SMP nodes. Srinivasan and Adve proposed the predictive DTM by
profiling multimedia applications [33]. All the studies target at the
overall chip temperature or the localized temperature whose
granularity is a functional unit (e.g., integer register, integer
execution unit, issue unit, and L1 instruction cache).

As far as we know, there have been only two studies on more
fine-grain temperature management, which investigated the
thermal behavior of cache subarrays. To prevent several sub-
arrays from being overheated, John et al. [16] proposed two
subarraying schemes: separated subarray and interleaved sub-
array. To reduce the excessive temperature, which leads to more
leakage, Ku et al. [18] maximized the distance of the blocks with
consecutive addresses. Both goals are to spread the cache accesses
across the subarrays, not to access adjacent subarrays. However,
they only concentrated on spreading heat for power and area
efficiency, not considering thermal attacks.

2.3 Thermal Security

Dadvar and Skadron [6] studied DTM-related thermal security
such as thermal DOS attack and data integrity problems. They
mentioned that a malicious code could cause a hardware
malfunction or burn-out of a chip, but they did not find an
example. Hasan et al. [11] introduced power density induced DOS
attack in Simultaneous multithreading (SMT) processors. They
showed that malicious thread can degrade the performance of
normal threads. Paul et al. [23] introduced thermal attack in
storage systems. They revealed that thermal attack is possible on
storage system. However, to the best of our knowledge, there has
been no study on thermal attack (not DOS) in a microprocessor
caused by a real malicious code.

3 POTENTIAL THERMAL ATTACK

BY MALICIOUS CODES

3.1 Processor’s Vulnerability to Thermal Attacks

As pointed out in [31], localized heating up is much faster than chip-
wide heat transfer that creates thermal hotspots across the entire
chip. This requires deploying thermal sensors at each possible
hotspot for accurate thermal tracking, which, however, may not be
feasible due to the cost and power consumption of these on-chip

thermal sensors. Typical compromised solution is to put a limited
number of thermal sensors at those known most likely hotspots
based on the thermal behavior of the normal applications. Since a
limited number of thermal sensors which are deployed in generally
known hotspot are not sufficient to track temperature changes
across a large chip [10], [19], [22], it also leaves the opportunity for
malicious software to create hotspots in unmonitored functional
blocks. In modern microprocessor designs, designers make theore-
tical thermal maps which guide an efficient thermal sensor
placement. Using those thermal maps, thermal guard bands are
set to guarantee that nowhere in the microprocessor is over the
maximum reliable temperature [10]. However, since thermal maps
are extracted based on the behavior of normal applications, these
thermal guard bands guarantee the reliability only when the normal
application is executed. In addition, microprocessor designers
usually optimize their DTM techniques for normal applications to
minimize performance overheads. In [22], they introduced an
efficient and reliable sensor placement. However, they also
allocated thermal sensors based on the normal application behavior.
Thus, thermal malicious codes could avoid the thermal runaway
detection by the thermal sensors. If the theoretical thermal maps do
not consider the thermal malicious codes, unmonitored hotspots can
physically damage the circuitry without being detected by faraway
thermal sensors (recall that performance will be severely degraded,
when malicious codes are considered for thermal guard bands as
mentioned in Section 1). In other words, thermal guard bands may
not be sufficiently large to detect unusual thermal behavior due to a
long distance between the thermal sensors and the target of thermal
malicious code. In this case, the target of the thermal attack may be
heated over the thermal emergency temperature without being
detected by faraway thermal sensors. Furthermore, when the
thermal attack concentrates on more fine-grain units, it is more
difficult to detect the thermal emergency.

3.2 Targets of Thermal Attacks

It is not easy to attack the generally known hotspots because
thermal sensors are typically deployed near these hotspots. The
L1 caches are largely ignored for thermal protection, since they are
not recognized as thermal hotspots when running normal applica-
tions. Table 1 shows peak temperatures of the functional blocks
when running SPEC2000 benchmarks in our simulated micro-
processor. (The detailed specification of our simulated micropro-
cessor is described in Section 7.1.) To examine the thermal behavior
of the normal applications, we used SimPoint [27] to gain more
exact simulation results. We deploy thermal sensors in nine
functional units which are generally known as hotspots. (Func-
tional units that are equipped with thermal sensors are empha-
sized by gray-shaded, bold, and italic font in Table 1.) Considering
the maximum junction temperature in 70 nm technology [29],
DTM trigger and emergency temperature is set to 95�C and 100�C,
respectively. When the trigger temperature is reached, dynamic
voltage and frequency scaling (DVFS) operates to cool down the
microprocessor. When the emergency temperature is reached, the
microprocessor stops fetching instructions until it is sufficiently
cooled down.

As shown in Table 1, the L1 caches are relatively cool units
compared to the other units. Moreover, the L1 caches occupy
relatively large area in microprocessors, which makes it difficult to
detect the fine-grain localized hotspots. Between the data cache and
the instruction cache, the data cache seems to be more attractive to
attack. Since the data cache can be accessed several times in one
cycle due to the superscalar feature. However, effective address
calculation of load/store instructions makes the integer register file
much hotter than the data cache, which invokes DTM. On the other
hand, the L1 instruction cache is not directly related to micro-
processor’s back-end functional units. Furthermore, it can be
accessed in every cycle by well-constructed malicious codes.
Therefore, we choose the instruction cache as our target.

218 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

4 FINE-GRAIN THERMAL MODELING

AND CHARACTERIZATION

To enable an accurate thermal analysis of the instruction cache
under thermal attacks, we model the thermal behavior of the
instruction cache at fine granularity that captures the physical
implementation details of Alpha 21364 as close as possible. We
utilize the Cacti cache model [26] to derive the detailed geometric
sizes and power distribution of the instruction cache at the
macroblock level. According to Cacti [26], both the data and tag
arrays are divided into subblocks, and further into subarrays.
Each subarray is largely an autonomic unit where both the bit-cell
array and peripheral circuits are activated during the access to the
subarray. For a close look into the internal cache structures, we
first breakdown the data subarrays into major functional blocks:
bit-cell array, postdecoder, column multiplexer, precharge circuit,
sense amplifier, and data output driver. Except bit-cell array (IBA)
and postdecoder (IPD), the rest four units are combined into a
single block as a data output unit (IDO) due to their small sizes in
height. Similarly, the tag subarray is composed of tag bit-cell
array, postdecoder, and tag match unit. However, due to its small
dimensional sizes, only about 9 percent of the data subarray in
area, the tag subarray (ITA) is also treated as a single block in our
thermal modeling. Between the subarrays, there are data/address
routing units (IDA) and postdecode address routing units (IPA),
which are used to route data and address. IVS stands for void
space which does not have any power consumption. The floorplan
of an instruction cache (at 70 nm technology) similar to the one in
Alpha 21364 is given in Fig. 1a. The Alpha EV7 floorplan (with its
EV6 core) from [31] is used as the reference floorplan for this
study, which is shown in Fig. 1b.

5 MALICIOUS CODES

To thermally attack the instruction cache, the generally known
hotspots should remain cool below the DTM trigger temperature.

Otherwise, DTM may be invoked by the thermal sensors near the

traditional hotspots, which makes our attack failed. The basic

philosophy of our malicious code is to largely disable the back end

(e.g., register file and ALU that are known as the hottest functional

units) of the processor datapath while keeping the instruction cache

busy. Theoretically, the code that involves no actual operations in

the processor’s back end can be an effective malicious code for the

above purpose. Therefore, the code which contains an NOP in an

infinite loop could be the simplest malicious code for attacking the

instruction cache.
However, if a malicious code consists of only one small basic

block, it is not sufficient to attack the L1 instruction cache. If the

microprocessor has an instruction buffer, it makes the processor

access the instruction buffer instead of the L1 instruction cache,

which also makes our malicious code unsuccessful. Thus, we

should use at least more than two basic blocks which consist of

NOP and BR instruction. Since each basic block resides in

different cache lines, the L1 instruction cache should be accessed

every cycle. To deal with large instruction buffers that can store

multiple cache lines, we use N basic blocks. N should be

sufficiently large considering the instruction buffer capacity. In

this manner, we can make the instruction cache be accessed every

cycle. To improve the efficiency of the malicious code, we use

dummy codes between the basic blocks. Dummy codes are not

executed because a program flow cannot reach them. Using the

dummy codes, we can make basic blocks reside in the same IBA,

which helps only specific data subarrays and tag subarrays to be

accessed. Maximum N value is determined by the size of one IBA,

since too many basic blocks cannot be stored all in one IBA. The

range of N value is denoted as (1). We ignored the program

initialization code section.

instruction buffer capacity

cache line size
< N � one IBA capacity

cache line size
: ð1Þ

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010 219

TABLE 1
Peak Temperatures of Major Processor Functional Units When Running SPEC2000 Benchmarks

Fig. 2 shows the malicious code example. Though 512 was the

maximum N value that we could use, we used 256 as N value

because program initialization code section occupies some portion

of our target IBA (IBA0). However, 256 is a sufficiently large value

to make the instruction buffer useless. There is one big loop body

which contains 256 basic blocks. Between the basic blocks, it

contains dummy codes. We make the basic blocks reside in IBA0 in

this code example. Since the access to IBA0 is directly related to the

access to tag subarray0 (ITA0) and 1 (ITA1) among four ITAs, this

code address alignment is also effective in heating a specific tag

subarray as well as a specific data subarray. Please note that we

assume that none of code optimization is applied in this code.
Though Alpha architecture automatically converts NOP in-

struction to BIS instruction, we used NOP instruction which does

nothing in microprocessor’s back end. Currently, microprocessor

architects may make NOP do nothing in processor’s back end to

reduce power consumption and complexity.

6 SIMPLE TECHNIQUES TO PROTECT

CACHES FROM THERMAL ATTACKS

To detect thermal emergency, the simplest way is to deploy

accurate thermal sensors as many as possible. Though we can

protect the chip from thermal runaway using lots of thermal

sensors, the cost overhead is too high to bear. Instead, we propose

two cost-effective techniques. One is a hardware-based protection

technique and the other is a software screening technique which

leverages specific softwares such as the malicious code scanner [24].

6.1 Hardware-Based Protection Technique

One data subarray or tag subarray being continuously accessed

can become a hotspot in the microprocessor. To avoid this fine-

grain localized hotspot, we propose a simple and effective

hardware-based solution. If the proposed instruction cache

controller senses the fine-grain localized hotspot, an appropriate

DTM can be invoked. Since there is a high correlation between

access frequency and temperature, the access counter for each ITA

and IBA in the cache controller can be used as a virtual thermal

sensor. Compared to deploying many thermal sensors, this

solution is much more cost-effective. As depicted in Fig. 3, when

an access counter of a specific block (block access counter) exceeds

the predefined threshold value in a predefined time slice (Tslice),

the heavy access counter of this block is increased. In a subsequent

time slice, if an access counter of this block exceeds the threshold

again, the heavy access counter of this block is increased again.

Otherwise, the heavy access counter of this block is reset to zero

regardless of the current heavy access counter value. All of the

block access counters are set to zero at each time slice boundary. If

the heavy access counter of any block reaches predefined thresh-

old value (Hth), the microprocessor stops fetching instructions

until the microprocessor becomes sufficiently cool. In other words,

if the microprocessor consecutively as well as intensively accesses

the same data subarray or tag subarray, the microprocessor stops

fetching for a sufficient cooling time. The relationship among the

sufficient cooling time (Tc), the heavy access threshold (Hth), and

the time slice (Tslice) is denoted as follows:

Tc ¼ ��Hth � Tslice: ð2Þ

220 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

Fig. 1. The floorplan of the instruction cache (unit size: cm) and the entire microprocessor. The cache configuration is from Alpha 21364. (a) Modeled floorplan of the

instruction cache. (b) Modeled floorplan of Alpha 21364.

Fig. 2. An example of malicious code.

The value of � in (2) represents the aggressiveness of the

protection technique. It depends on the amount of time needed to
cool down the microprocessor. After the cooling time, all of the
heavy access counters are set to zero, and then, the microprocessor

resumes the execution. Since in the normal applications, the same
tag subarray or data subarray is not likely accessed intensively, the
proposed technique has little performance overhead. Additional

hardware overhead is only small control logic for fetch throttling
and two access counters (block and heavy) for each IBA and ITA.
In this paper, 90,000 is used as the threshold value of the block

access counter per time slice and heavy access threshold
value (Hth) is set to 5. One time slice (Tslice) is set to 100,000 cycles
and � is set to 2. Proper values for these parameters can be
determined by thermal simulations [5].

6.2 Software Screening

Since the malicious codes introduced in Section 5 have specific

patterns, the software such as malicious code scanner [24] can
detect thermally malicious codes. Compared to the hardware-
based protection techniques, the software screening technique can

detect the malicious code before the malicious code is executed
while hardware-based technique can detect thermal emergency
after the malicious code is once executed. To prevent malicious

codes from being executed, software techniques such as
API hooking [15] can be adopted. By adding thermally malicious
code signature [24] to currently used malicious code scanners, the

software screening technique eliminates thermal threat in a cost-
effective manner. However, since there are too many variations of
the malicious codes, software screening should know all the
possible patterns.

7 EVALUATION

7.1 Evaluation Methodology

For experimental evaluation, we extended the original SimpleSca-

lar simulator [4] to model the Alpha 21364 microprocessor as close
as possible. The detailed configuration of the simulated Alpha
21364 microprocessor is given in Table 2. The power model for this
Alpha 21364 microprocessor simulator is derived from Wattch [2].

HotSpot [31], [32] and HotLeakage [35] are also incorporated into
this processor simulator to profile the temperatures and the
leakage power of the caches. Please note that HotSpot has been

validated against Floworks, which is a commercial simulator of
3D fluid and heat flow [32]. As mentioned in Section 4, the
reference floorplan is from Alpha 21364. For the 70 nm technology

we are evaluating here, the floorplan is shown in Fig. 1b and the
dimensions of the processor components are scaled down from the
180 nm technology. We employed several parameters such as the

supply voltage and frequency from IBM Power6 microprocessor
[7], [9]. Other HotSpot-related parameters are from HotSpot 4.0

default parameters [13]. Several DTM-related parameters are same

as we mentioned in Section 3.2 (DTM trigger and emergency

temperature is 95�C and 100�C, respectively.). Please note that our

simulated microprocessor is not a commercial microprocessor but

a hypothetical microprocessor like Alpha EV7 with the advanced

process technology.

7.2 Thermal Attack by Malicious Codes

Fig. 4 depicts the thermal map (of peak temperature) of the

simulated microprocessor when executing the malicious code

shown in Fig. 2. The upper part of the instruction cache becomes

thermal hotspot, while the other parts of the microprocessor

become relatively cool. Fig. 5 shows the peak temperature of major

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010 221

Fig. 3. The proposed hardware-based protection technique.

TABLE 2
Parameters for the Simulated Alpha 21364 Processor

Fig. 4. Thermal map of the simulated microprocessor when executing the

malicious code.

hot functional units in the microprocessor when executing the

malicious code and the SPEC2000 benchmarks. As illustrated in

Fig. 5, the temperature of ITA0, ITA1, and IPA4 which are located

in upper part of the instruction cache is 110:31�C, 110:78�C, and

110:10�C, respectively. These units become the hottest units in the

microprocessor. Besides the instruction cache, the branch predictor

(Bpred) is the hottest unit which is 102:66�C. Among the nine

units where the thermal sensors are deployed (these units are

emphasized by gray-shaded, bold, and italic font in Table 1), the

temperatures of these units are always below the DTM trigger

temperature. It makes thermal sensors deployed in the generally

known hotspots useless.
Comparing the temperature difference of the instruction cache

between two cases (when executing the malicious code and the

normal application), the maximum temperature difference is

37:85�C (ITA1). It implies that such a malicious behavior can

abnormally overheat the instruction cache, which can incur

malfunction or reliability problems [31] in the instruction cache.

Additionally, since the leakage power is strongly related to the

temperature [17], the leakage power also gets increasing with the

malicious code.
The required time for heating the instruction cache (ITA1) to

100�C is 38.24 ms in 5.6 GHz frequency. Because recent

operating systems such as UNIX or Linux use 50-200 ms as

the context switch time slice [28], the malicious code can attack

without being intervened by the context switch. Note that 100�C

is the maximum junction temperature for 70 nm technology, as

reported in ITRS 2006 [29].

7.3 Protecting the Instruction Cache
from Thermal Attacks

The thermal map of the simulated microprocessor when adopting

the protection technique described in Section 6.1 is depicted in

Fig. 6. After adopting the proposed technique, the temperature

difference between the upper part of the instruction cache and the

other functional units becomes very small. When using the

proposed technique, the temperature of ITA1, ITA0, and IPA4,

which were the localized hotspots, is reduced to 84:5�C, 84:35�C,

and 83:95�C, respectively, as shown in Fig. 7. The average

temperature drop of the seven units in Fig. 7 is 26:13�C. After

adopting this simple protection technique, the instruction cache

becomes free of potential thermal risk.

As discussed in Section 6.2, software screening technique can

detect thermally malicious codes thus preventing them from

execution, consequently protecting the instruction cache from

thermal attacks. The detailed evaluation of the software screening

technique is out of the scope of this paper.

8 CONCLUSIONS AND FUTURE WORKS

In this paper, we demonstrated how to thermally attack the

microprocessor. We showed that it can incur a serious thermal

reliability problem in microprocessors. Furthermore, we also

evaluated the effectiveness of the proposed schemes that protect

the instruction cache against potential thermal attacks. Note that the

proposed techniques have little performance overhead, since there

are very few cases such as the malicious behavior in the normal

applications. A major focus of this work is to identify the design

deficiency of thermal security in the conventional thermal manage-

ment schemes, which is vulnerable to potential thermal attacks. It is

also fundamentally different from previous efforts on DTM, whose

goal is to prevent the well-known hottest processor components

from incurring the possible thermal emergency situation.
As technology scales down and power density grows up,

thermal emergency by malicious codes will be more severe.

Therefore, computer security engineers as well as microprocessor

designers should be aware of potential thermal attack caused by

thermal malicious codes, which may lead microprocessors to

thermal runaway. The malicious code scanner should be able to

detect thermally malicious codes given the availability of patterns

of malicious codes. Though a simple pattern of malicious codes

targeting at the instruction cache is shown in this paper, various

patterns of malicious codes can be generated by an automatic

code generation tool that will be implemented by our research

group soon.

222 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010

Fig. 5. The peak temperature of the six hottest units in the instruction cache and

major hot functional units.
Fig. 6. Thermal map of the simulated microprocessor when protected by the

proposed protection technique.

Fig. 7. Comparison of peak temperatures.

ACKNOWLEDGMENTS

This work was supported by the Korea Science and Engineering

Foundation (KOSEF) grant funded by the Korea government

(MEST) (No. R01-2007-000-20750-0). This work was also sup-

ported by a Korea University Grant. The authors would like to

thank Professor Kevin Skadron for his helpful comments.

Finally, they would like to thank the anonymous reviewers for

their helpful feedback. Sung Woo Chung is the corresponding

author of this paper.

REFERENCES

[1] S. Borkar, “Design Challenges of Technology Scaling,” IEEE Micro, vol. 19,
no. 4, pp. 23-29, July/Aug. 1999.

[2] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural Level Power Analysis and Optimizations,” Proc. Int’l Symp.
High-Performance Computer Architecture, 2000.

[3] D. Brooks and M. Martonosi, “Dynamic Thermal Management for High-
Performance Microprocessors,” Proc. Int’l Symp. High-Performance Computer
Architecture, Jan. 2001.

[4] D. Burger, A. Kagi, and M.S. Hrishikesh, “Memory Hierarchy Extensions to
Simplescalar 3.0,” Technical Report TR99-25, Dept. of Computer Sciences,
Univ. of Texas at Austin, 2000.

[5] S.W. Chung and K. Skadron, “Using On-Chip Event Counters for High-
Resolution, Real-Time Temperature Measure,” Proc. IEEE/Am. Soc. Mechan-
ical Engineers (ASME) 10th Intersoc. Conf. Thermal and Thermomechanical
Phenomena in Electronic Systems (ITherm ’06), May 2006.

[6] P. Dadvar and K. Skadron, “Potential Thermal Security Risks,” Proc. IEEE
Semiconductor Thermal Measurement, Modeling, and Management Symp. (Semi-
Therm 21), pp. 229-234, Mar. 2005.

[7] J. Davis, D. Plass, P. Bunce, Y. Chan, A. Pelella, R. Joshi, A. Chen, W. Huott,
T. Knips, P. Patel, K. Lo, and E. Fluhr, “A 5.6 GHz 64 kB Dual-Read Data
Cache for the POWER6TM Processor,” Proc. Int’l Solid-State Circuits Conf.
(ISSCC), Digest of Technical Papers, Feb. 2006.

[8] M.S. Floyd, S. Ghiasi, T.W. Keller, K. Rajamani, F.L. Rawson, J.C. Rubio,
and M.S. Ware, “System Power Management Support in the IBM POWER6
Microprocessor,” IBM J. Research and Development, vol. 51, no. 6, pp. 733-
746, 2007.

[9] J. Friedrich et al., “Design of the POWER6 Microprocessor,” Proc. Int’l Solid-
State Circuits Conf. (ISSCC), Digest of Technical Papers, Feb. 2007.

[10] S.H. Gunther, F. Binns, D.M. Carmean, and J.C. Hall, “Managing the Impact
of Increasing Microprocessor Power Consumption,” Intel Technology J.,
vol. 5, no. 1, p. 9, Feb. 2001.

[11] J. Hasan, A. Jalote, T.N. Vijaykumar, and C.E. Brodley, “Heat Stroke:
Power-Density-Based Denial of Service in SMT,” Proc. Int’l Symp. High-
Performance Computer Architecture, 2005.

[12] M. Huang, J. Renau, S.-M. Yoo, and J. Torrellas, “A Framework for
Dynamic Energy Efficiency and Temperature Management,” Proc. Int’l
Symp. Microarchitecture, 2000.

[13] W. Huang, K. Sankaranarayanan, K. Skadron, R.J. Ribando, and M.R. Stan,
“Accurate Pre-RTL Temperature-Aware Design Using a Parameterized,
Geometric Thermal Model,” IEEE Trans. Computers, vol. 57, no. 9, pp. 1277-
1288, Sept. 2008.

[14] C. Isci and M. Martonosi, “Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data,” Proc. IEEE/ACM Int’l Symp.
Microarchitecture, Dec. 2003.

[15] I. Ivanov, API Hooking Revealed, http://www.codeproject.com/system/
hooksys.asp, 2002.

[16] J.K. John, J.S. Hu, and S.G. Ziavras, “Optimizing the Thermal Behavior of
Subarrayed Data Caches,” Proc. IEEE Int’l Conf. Computer Design, Oct.
2005.

[17] N.S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin,
M. Kandemir, and V. Narayanan, “Leakage Current: Moore’s Law Meets
Static Power,” Computer, vol. 36, no. 12, pp. 68-75, Dec. 2003.

[18] J.C. Ku, S. Ozdemir, G. Memik, and Y. Ismail, “Thermal Management of
On-Chip Caches through Power Density Minimization,” Proc. IEEE/ACM
Int’l Symp. Microarchitecture, Nov. 2005.

[19] K.-J. Lee, K. Skadron, and W. Huang, “Analytical Model for Sensor
Placement on Microprocessors,” Proc. IEEE Int’l Conf. Computer Design, Oct.
2005.

[20] K.-J. Lee and K. Skadron, “Using Performance Counters for Runtime
Temperature Sensing in High-Performance Processors,” Proc. Workshop
High-Performance, Power-Aware Computing (HP-PAC), Apr. 2005.

[21] A. Merkel, F. Bellosa, and A. Weissel, “Event-Driven Thermal Management
in SMP Systems,” Proc. Second Workshop Temperature-Aware Computer
Systems (TACS ’05), June 2005.

[22] R. Mukherjee and S.O. Memik, “Systematic Temperature Sensor Allocation
and Placement for Microprocessors,” Proc. Design Automation Conf., July
2006.

[23] N. Paul, S. Gurumurthi, and D. Evans, “Thermal Attacks on Storage
Systems,” Proc. 23rd IEEE Conf. Mass Storage Systems and Technologies
(MSST ’06), May 2006.

[24] C. Pfleeger and S. Pfleeger, Security in Computing, third ed. Prentice-Hall
PTR, 2003.

[25] M.D. Powell, M. Gomaa, and T.N. Vijaykumar, “Heat-and-Run: Leveraging
SMT and CMP to Manage Power Density through the Operating System,”
Proc. Int’l Conf. Architectural Support for Programming Language and Operating
System (ASPLOS ’04), Oct. 2004.

[26] G. Reinman and N. Jouppi, “An Integrated Cache Timing and Power
Model,” technical report, Compaq Western Research Laboratory, 1999.

[27] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
Characterizing Large Scale Program Behavior,” Proc. 10th Int’l Conf.
Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’02), 2002.

[28] R.S. Shindi and S. Cooper, “Evaluate the Performance Changes of Processor
Simulator Benchmarks When Context Switches are Incorporated,” Proc.
ACM SIGAda ’06, Nov. 2006.

[29] SIA, Int’l Technology Roadmap for Semiconductors (ITRS), Available at
http://www.itrs.net/reports.html, 2006.

[30] K. Skadron, T. Abdelzaher, and M.R. Stan, “Control-Theoretic and
Thermal-RC Modeling for Accurate and Localized Dynamic Thermal
Management,” Proc. Int’l Symp. High-Performance Computer Architecture, Feb.
2002.

[31] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayana, and D.
Tarjan, “Temperature-Aware Microarchitecture,” Proc. Int’l Symp. Computer
Architecture (ISCA ’03), June 2003.

[32] K. Skadron, M. Stan, K. Sankaranarayana, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-Aware Microarchitecture: Modeling and
Implementation,” ACM Trans. Architecture and Code Optimization, vol. 1,
no. 1, pp. 94-125, Mar. 2004.

[33] J. Srinivasan and S.V. Adve, “Predictive Dynamic Thermal Management for
Multimedia Applications,” Proc. Int’l Conf. Supercomputing (ICS ’03), June
2003.

[34] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Reducing
Power in High-Performance Microprocessors,” Proc. Design Automation
Conf., 1998.

[35] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,
“Hotleakage: A Temperature-Aware Model of Subthreshold and Gate
Leakage for Architects,” technical report, Dept. of Computer Science, Univ.
of Virginia, 2003.

[36] VAR Business, Intel Clears Up Post-Tejas Confusion, Available at http://
www.varbusiness.com/sections/news/breakingnews.jhtml?articleId=
18842588, 2009.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 2, APRIL-JUNE 2010 223

